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Abstract—Automatic discovery of services and resources is
a crucial feature to achieve the expected user-friendliness in
Mobile Ad-hoc Networks. Due to limited computing power, scarce
bandwidth, high mobility and the lack of a central coordinating
entity, service discovery in these networks is a challenging task.

In this paper, we develop a service discovery protocol (Mer-
cury) utilizing a combination of different optimization tech-
niques: The performance is increased using cross-layer inter-
action between the application layer and the routing layer.
The service information is described using Bloom filters and
distributed using Optimized Link State Routing (OLSR). A
caching regime is implemented to obtain further reductions of
both overhead and latency.

The analysis and simulation results show that our service
discovery proposal induces very low overhead to OLSR and
is superior to application layer solutions. The proposal is im-
plemented as a plugin to the OLSR implementation olsrd for
real-world deployments.

Index Terms—MANET, OLSR, Service discovery

I. INTRODUCTION

A Mobile Ad-hoc NETwork (MANET) is a collection of
mobile nodes connected by wireless links able to dynamically
form an arbitrary multihop network—without the use of any
pre-existing infrastructure. In order to enable communication
between any two nodes in such a network, a special routing
protocol is employed. The IETF MANET working group
mainly considers two routing approaches: Reactive routing
such as AODV [18] and Proactive routing such as OLSR [5].

However, there is a need for a service discovery protocol to
discover applications, services and resources in the network.
There has been much research activity in the field of service
discovery by several consortiums, companies and organiza-
tions. This research has produced service discovery mainly for
fixed local area networks. Examples include Service Location
Protocol (SLP) [9], Simple Service Discovery Protocol (SSDP)
[8], Jini [20] and DNS Service Discovery (DNS-SD) [4].
However, the overall Internet community has not yet reached a
consensus on one particular service discovery protocol. More-
over, none of the above solutions are applicable to MANETs
without adaptations as these networks have less computing
resources, lower network bandwidth, higher mobility and more
heterogeneity.

Service discovery (SD) mechanisms for MANETs are di-
vided in two groups: (1) mechanisms independent of the
underlying routing protocol, and (2) mechanisms integrated
with the routing protocol, be it either reactive or proactive.

Most of the MANET SD proposals belong to the first
category and solves the SD at a layer above routing—referred
to as application layer service discovery. Examples include
SLPManet [1], PDP [3] and Konark [10], which all rely on
multicast support on the network layer. The performance of
such SD protocols is therefore bound to the chosen multicast
protocol. Further, multicast in MANETs is still at the research
stage (no standard is defined) and is hence an open issue.

A better and more optimized approach is therefore to im-
plement the SD protocol in a cross-layer fashion, and exploit
the routing layer for efficient dissemination of service control
messages. SEDRIAN [16] and the work by Engelstad et al. [6]
propose cross-layer service discovery utilizing AODV. Jodra
et al. [11] and Lightweight Service Discovery (LSD) [12] are
examples of cross-layer service discovery using OLSR.

Differing from previous work on cross layer service discov-
ery based on OLSR, this paper focus to support low-bandwidth
environments and investigates an efficient way to describe
services using Bloom filters combined with service caching.
The analysis and simulation results show that our optimized
SD proposal named Mercury, induces very low overhead to
OLSR and outperforms application layer SD solutions. The
proposal is implemented for real-world deployments [7].

The remainder of this paper is organized as follows: Sec-
tion II presents Mercury service discovery protocol in detail.
Section III describes the real-world implementation. Section
IV and V presents and discusses the simulations. Finally, the
paper is concluded by section VI.

II. OUR SERVICE DISCOVERY DESIGN

A. Overview

To successfully create service discovery for bandwidth-
constrained environments, we envision several combined op-
timizations. For this purpose, we propose a new SD solution,
Mercury. Mercury describes the service descriptors efficiently
as Bloom filters, performs service dissemination by piggy-
backing service information on OLSR routing messages and
utilizes caching of service advertisements.

Mercury handles requests and advertisements from two
entities: (1) Local applications on the node and (2) foreign
nodes through the ad hoc network (Fig. 1). Each node uses a
set of repositories to store the information (Fig. 3): Advertised
services contains the different services offered by the node
itself. The services persist in this list until an upper layer
application withdraws the service. Advertisements are sent
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Fig. 1. Mercury connects users and applications to services in the Ad hoc
network using service advertisements and service requests.

both when a service is first registered and upon an external
request. All the service descriptors in this list are included in
advertisemens encoded as one single Bloom Filter. In Foreign
services cache, all the services offered by other nodes are
stored. Each entry in the list consists of the Bloom Filter ad-
vertised by the foreign node and its current IP address. The last
repository contains the Requested services which stores all
the services requested—awaiting an incoming advertisement.

All incoming advertisements are immediately stored in the
cache. Upon a request from an upper layer application, the
cache is first requested. If an entry is found, the application is
immediately notified. Otherwise, a service request is sent.

B. Protocol format

OLSR communicates using a unified packet format for
all data [5]. Using this format the OLSR standard provides
extensibility of the protocol without breaking backwards com-
patibility. This feature gives a unique possibility to disseminate
different kinds of information through intermediate nodes even
if the nodes do not support the specific extension.

We take advantage of the extensibility feature of the OLSR
format, and introduce a new message, namely the Mercury
service discovery message (MSD). MSD messages are sent
as the data-portion of the general message format with the
message type set to MSD MESSAGE. The MSD message has
the format specified in Fig. 2 when piggybacked to an OLSR
header. The Mercury part consists of four fields including a
Spare field for future use. The Type field indicates whether the
message is a service request or a service reply. The Service
Filter field contains the filter describing the services to be
requested or advertised encoded as a Bloom filter (described
subsequently). The Filter Length gives the size of the filter.

C. Distributing service descriptors

Many service discovery protocols use XML to describe the
service information, such as in [10]. However, XML requires
considerable bandwidth, which is sparse in ad hoc networks.
An alternative is to map a predefined set of keywords, or
service descriptors, to integers to save bandwidth as proposed
in [11]. This solution indeed saves bandwidth. However, it is
not very flexible nor is it scalable, as it requires maintenance
on every node in the network when new service categories are
added.

The proposed solution in this paper is therefore to distribute
a summary of the available services as a vector described as a
Bloom filter [2]. A Bloom filter is a data structure that allows
data representation in a simple and space-efficient manner.

0                   1                   2                   3 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|         Packet Length         |    Packet Sequence Number   | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  MSD_MESSAGE  |     Vtime     |         Message Size        | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                      Originator Address                     | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  Time To Live |   Hop Count   |    Message Sequence Number  | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|     Type      | Filter Length |            Spare            | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                                                             | 

:                       Service Filter                        : 

|                                                             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 2. Mercury service discovery format as an extension to the OLSR
message format [5]

The filter is created by hashing service descriptors to a size-
defined bit array. The size limitation may cause the filter to
indicate that a service descriptor is in the filter even though
it is not—referred to as a false positive. The implementation
of the Bloom filter is hence a trade off between the size of
the filter and the probability of a false positive request to the
filter. Our Bloom filter is implemented using k independent
hash functions to hash each service descriptor to the array.
Given the number of service descriptors n and the filter width
m, the probability of a false positive lookup can be given as:

Pn =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−

kn
m

)k

(1)

In order to minimize the false positive rate, the filter width
should mathematically be as large as possible. However, the
feasible size is limited by computation time, OLSR packet
size and memory consumption. The optimal value of k can be
calculated by taking the derivate of equation 1. We then find
that the derivate is 0 when k = m

n ln 2, hence yielding the
optimal number of hash functions for a given filter width. By
having a thorough understanding of the target application the
parameters k and m can be set to minimize the probability
of false positive. In Mercury, the parameters are adjustable,
however the default values are k = 4 and m = 128.

In Mercury the filter is created using the message digest
function MD5 [19]. MD5 is a cryptographic hash function
that hashes arbitrary length strings to 128 bits. The k hash
functions can then be constructed from k groups of r bits
each out of the 128 bit hash. The Bloom filter in Mercury is
implemented as shown in algorithm 1.

Algorithm 1 is used both when services are advertised
and requested. An example usage of Bloom filter based SD
is shown in Fig. 3. Each node advertises two services and
employs three hash functions to describe the services. After
performing service requests, the descriptors are stored in the
local cache of the other nodes. The cache consists of one
Bloom filter for each of the cached nodes (i.e. attenuated
Bloom filter).
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Fig. 3. A Mobile Ad hoc Network consisting of three nodes. Each node use three hash functions to create the Bloom filter and employs two repositories:
One repository store the local services advertised, and one repository—implemented as an attenuated Bloom filter of depth d—serves as a cache storing
advertisements received from foreign nodes.

Algorithm 1 Calculate the Bloom filter v for service x

Require: x 6= 0
1: a⇐MD5(x)
2: r ⇐ 128/k
3: for i = 0 to k do
4: f ⇐ subbits(r ∗ i, (r ∗ (i + 1))− 1, a)
5: v[f mod m] = 1
6: end for

D. Caching

Caching is employed to save network bandwidth. Caching
may however, lead to false positive replies to the overlying
application (Fig. 1) if the advertised service exists in cache
even if the node with the advertised service is—due to network
clustering—not available anymore. The cache cleanup timeout
is therefore a trade-off between fast service queries and the
false positive rate. To reduce the amount of false replies to the
application, we propose a path-aware approach that consults
the local routing table for the availability of the nodes in the
cache. If a service exists is in the cache even if the node is
not available, Mercury removes the cache entry and performs
a new service discovery in order to find relevant nodes offering
a similar service.

III. IMPLEMENTATION AND USE

The Mercury SD proposal is implemented as an extension to
the UniK OLSR implementation (olsrd) [17]. Olsrd supports
the loading of dynamically loaded libraries for auxiliary func-
tions using a generic plugin interface [21]. Here, the Mercury
plugin is briefly described and example usage is given. The
code is available at [7] for further reference.

In order to allow communication between the plugin and
user applications, a simple Inter-process communication (IPC)
function is enabled via TCP/IP. Using IPC, services are
requested, advertised, and withdrawn using a set of simple
commands. By using Mercury and by adding only a few code

lines, any distributed application can be extended to facilitate
SD—regardless of programming language.

Peers [14] is a minimal SIP user agent (UA) written in Java.
It enables Voice over IP services by allowing a user to call
another user in the MANET using SIP. Using standard Peers,
the caller is required to enter the IP address belonging to the
node which it wants to call. By adding a few code lines, the
application can utilize Mercury service discovery to detect the
IP address of other SIP UAs automatically.

As shown, first the IPC socket is initialized. Then, two
objects are created to communicate with the socket:

mySD = new Socket("localhost",port);
out = new PrintWriter(mySD.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

mySD.getInputStream()));

After initialization, the service ”SIP” is advertised to inform
other SIP-clients in the ad-hoc network about the existence of
the UA by advertising itself (ADVR):

out.println("ADVR SIP");

The application then immediately requests for all other SIP
UAs using the code word RQST:

out.println("RQST SIP ALL");

The application will now receive the IP addresses of all
the other SIP enabled clients—immediately as they connect—
via the IPC Interface (in). The successful discovery of other
clients can then be parsed using a simple string tokenizer.
By using only a few code lines, the Peers SIP software is
changed to automatically detect other SIP UA in the Ad hoc
network. Other existing distributed applications such as file
sharing, instant messaging, whiteboard sharing, may use the
same technique.
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Fig. 4. Overhead using Mercury compared with SLPManet and PDP.

IV. PERFORMANCE EVALUATION

A. Simulation setup

The proposed service discovery mechanism is implemented
in ns-2.31 [22] as an extension to UM-OLSR [23]. The trans-
mission range is set to 100m and default OLSR parameters
according to [5] are used. For Mercury, the Bloom filter size
is set to 128 bits. All measurements are done after topology
convergence.

To make a qualitative benchmark of the overhead induced by
the service discovery process and the average time consumed
when requesting a service, the Mercury protocol is compared
with two widespread service discovery protocols, PDP [3]
and SLPManet [1]. As both PDP and SLPManet require an
underlying multicast routing protocol, our simulation of PDP
and SLPManet used nrlolsr [15] for ns2 with the extension
Simplified Multicast Forwarding (SMF) [13] used in S-MPR
mode. Mercury used OLSR MPR message forwarding.

B. Overhead

To measure the overhead, we used static square topologies
consisting of 4 to 64 nodes. The network had two services, lo-
cated on node 0 and 1. The services were randomly requested
by the other nodes with 5s intervals during the 1500s run. For
each static topology, 20 simulations were run and the 95%
confidence interval was estimated and presented in the figures.

Fig. 4 shows average network traffic induced by one single
service discovery with increasing network size. Compared to
its counterparts, the service discovery overhead is reduced by
a factor of 20 when using Mercury.

C. Delay

To measure the time delay when requesting a service, a
static network of nodes was chosen, and the nodes were
connected in chains of 2 to 20 nodes. The only service in
the network was located on node 0 and was requested by
the node on the edge of the chain with 10s intervals. The
delay between a service request and the successful receipt was
measured. Both Mercury and SLPManet utilize local caching
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Fig. 6. False positive probability caused by caching in a dense network.

with 300s timeout, which reduces the average time delay. The
average delay results from all topologies are given in Fig. 5.
For all topologies, Mercury performs better or equal than its
counterparts.

D. Path-aware algorithm

False positive replies as a side effect of caching cause
unacceptable delays and reduces user satisfaction. The benefit
using our path-aware caching algorithm is clearly showed by
the simulations. We created two scenarios, one dense and one
sparse. The dense scenario consisted of 22 nodes in a 250m x
550m area. The sparse scenario increased the area to 500m x
1000m. In both cases, the nodes followed the random waypoint
model with constant speed. The nodes advertised one service
each, which was randomly requested. 20 simulations were run
for each combination of node speed and cache time and 95%
confidence interval was estimated.

The results show the expected false probability using
caching. We observe that an application requesting a service
has a probability up to 12% of receiving a false positive
reply when a cache timeout of 1000s is used (Fig. 6). The
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Fig. 7. False positive probability caused by caching in a sparse network.

astute reader may also observe that the false positive rate in
some cases tend to decrease as the node speed increases. This
phenomenon is caused by general increased node availability
(more entries in the routing table) as node availability increase
with increasing speed due to the nature of the random way-
point mobility model.

By examining the sparse setup (Fig. 7), we see that the false
positive probability increases considerably. The false positive
rate is effectively reduced using our algorithm since it verifies
node availability by examining the routing table.

V. DISCUSSION

The performance results reveal that Mercury is superior to
SLPManet and PDP regarding overhead. The major overhead
reduction is caused by caching. Service descriptor compression
achieved from the Bloom filters (compared to transmitting
the service descriptors as text), and piggybacking of the
information in OLSR packets further reduce the overhead. Due
to these optimizations, it is expected that Mercury outperforms
other cross-layer SD proposals [11] and [12].

The time consumed to connect to the actual service is
expected to be many times higher than the discovery delay
found in the simulations. We therefore state that the service
discovery delay is promising for all service discovery alterna-
tives. However, caching is a way to achieve further reduction
of the delay.

The proposed path-aware caching architecture, reduces the
number of false positives and hence, increases application per-
formance and user-friendliness. An amount (albeit relatively
small) of false positive replies may still occur, as network
mobility and routing protocol settings may lead to erroneous
entries in the routing table.

We state that a combination of optimization techniques as
presented by Mercury is inevitable in order to support service
discovery in bandwidth-constrained environments.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a method of service
discovery using a combination of Bloom filters, the extensi-

bility feature of the OLSR, and a path-aware caching regime.
The false positive property of Bloom filters is evaluated
and discussed. By simulation, we have demonstrated the
performance gain by our cross-layer protocol compared to
application layer service discovery alternatives. We also have
provided an implementation for real-world usage available for
download. Future work includes further optimizations and tests
in real deployed networks focusing on bandwidth-constrained
environments.
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